The abovementioned complementary synergy team of experts with expertise in spectroscopy, microscopy and electron optic will develop the MORE-TEM nanospectrometer as “tabletop synchrotron (SP1) to study spatial (SP3) and momentum (SP4) mapping of nanoscale matter specimen (SP2). See sketch below. Figures in the sketch are adapted from the listed references.

References

     

  1. Y-C. Lin, S. Morishita, M.Koshino, C-H. Yeh, P-Y. Teng, P-W. Chiu, H. Sawada, and K. Suenaga,
    Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains
    Nano Letters, 17 (2017) pp.494-500, DOI: 10.1021/acs.nanolett.6b04534
  2.  

  3. R. Senga,T. Pichler,K. Suenaga,
    Electron Spectroscopy of Single Quantum Objects To Directly Correlate the Local Structure to Their Electronic Transport and Optical Properties
    Nano Letters, 16,3661 (2016); DOI: 10.1021/acs.nanolett.6b00825
  4.  

  5. R. Senga, T. Pichler, Y. Yomogida, T. Tanaka, H. Kataura, K.Suenaga
    Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes
    Nano Letters, 18,3920 (2018), DOI: 10.1021/acs.nanolett.8b01284
  6.  

  7. Y.-C. Lin, P.-Y. Teng, P.-W. Chiu and K. Suenaga
    Exploring the single atom spin state by electron spectroscopy
    Phys. Rev. Lett., 115 (2015) 206803 DOI: 10.1103/PhysRevLett.115.206803
  8.  

  9. R. Senga, K. Suenaga, P. Barone, S. Morishita, F. Mauri, T. Pichler
    Position and momentum mapping of vibrations in graphene nanostructures
    Nature. 573, 247–250 (2019). https://doi.org/10.1038/s41586-019-1477-8
  10.  

  11. J. Hong, R. Senga, T. Pichler, K. Suenaga,
    Probing Exciton Dispersions of Freestanding Monolayer WSe2 by Momentum-Resolved Electron Energy-Loss Spectroscopy
    Physical Review Letters 124, 087401 (2020); DOI:https://doi.org/10.1103/PhysRevLett.124.087401
  12.  

  13. L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J.C. Meyer, H. Peterlik, M.Wanko, S. Cahangirov, A. Rubio, Z.J. Lapin, L. Novotny, P. Ayala, T. Pichler,
    Confined linear carbon chains as a route to bulk carbyne
    Nature Materials, 15, 634 (2016); DOI:10.1038/NMAT4617
  14.  

  15. H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, T. Pichler
    Nickel clusters embedded in carbon nanotubes as high performance magnets
    Scientific Reports, 5, 15033 (2015); DOI:10.1038/srep15033
  16.  

  17. T. Pichler, H. Kuzmany, H. Kataura, and Y. Achiba.
    Metallic polymers of C60inside single-walled carbon nanotubes.
    Phys. Rev. Lett. 87, 267401 (2001); DOI: 10.1103/PhysRevLett.87.267401.
  18.  

  19. A.K. Geim, I.V. Grigorieva
    Building van der Waals heterostructures.
    Nature 499, 419-425 (2013) doi:10.1038/nature12385
  20.  

  21. P. Fratzl, R. Weinkamer
    Nature’s hierarchical materials
    Progress in Materials Science 52,1263–1334 (2007)
  22.